Correlating the magic numbers of inorganic nanomolecular assemblies with a {Pd84} molecular-ring Rosetta Stone.
نویسندگان
چکیده
Molecular self-assembly has often been suggested as the ultimate route for the bottom-up construction of building blocks atom-by-atom for functional nanotechnology, yet structural design or prediction of nanomolecular assemblies is still far from reach. Whereas nature uses complex machinery such as the ribosome, chemists use painstakingly engineered step-by-step approaches to build complex molecules but the size and complexity of such molecules, not to mention the accessible yields, can be limited. Herein we present the discovery of a palladium oxometalate {Pd(84)}-ring cluster 3.3 nm in diameter; [Pd(84)O(42)(OAc)(28)(PO(4))(42)](70-) ({Pd(84)} ≡ {Pd(12)}(7)) that is formed in water just by mixing two reagents at room temperature, giving crystals of the compound in just a few days. The structure of the {Pd(84)}-ring has sevenfold symmetry, comprises 196 building blocks, and we also show, using mass spectrometry, that a large library of other related nanostructures is present in solution. Finally, by analysis of the symmetry and the building block library that construct the {Pd(84)} we show that the correlation of the symmetry, subunit number, and overall cluster nuclearity can be used as a "Rosetta Stone" to rationalize the "magic numbers" defining a number of other systems. This is because the discovery of {Pd(84)} allows the relationship between seemingly unrelated families of molecular inorganic nanosystems to be decoded from the overall cluster magic-number nuclearity, to the symmetry and building blocks that define such structures allowing the prediction of other members of these nanocluster families.
منابع مشابه
Overcoming the Crystallization Bottleneck: A Family of Gigantic Inorganic {Pdx}L (x=84, 72) Palladium Macrocycles Discovered using Solution Techniques
The {Pd84 }(Ac) wheel, initially discovered serendipitously, is the only reported giant palladium macrocycle-a unique structure that spontaneously assembles from small building blocks. Analogues of this structure are elusive. A new modular route to {Pd84 }(Ac) is described, allowing incorporation of other ligands, and a new screening approach to cluster discovery. Structural assignments were ma...
متن کاملStudy of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model
In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...
متن کاملThe NMR-Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope.
Filamentous phage are elongated semiflexible ssDNA viruses that infect bacteria. The M13 phage, belonging to the family inoviridae, has a length of ∼1 μm and a diameter of ∼7 nm. Here we present a structural model for the capsid of intact M13 bacteriophage using Rosetta model building guided by structure restraints obtained from magic-angle spinning solid-state NMR experimental data. The C5 sub...
متن کاملExperimental and theoretical studies on inorganic magic clusters : M4X6 (M = W, Mo, X = O, S)
Studies using ultraviolet photoelectron spectroscopy (UPS) and density functional theory (DFT) demonstrate that M4X6 (M = W, Mo and X = O, S) clusters show large gaps (about 2 eV) between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), indicative of their high stability and chemical inertness. In particular, W4O6 has a lower symmetry and a large...
متن کاملElectronic Structure Investigation of Octahedral Complex and Nano ring by NBO Analysis: An EPR Study
To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 29 شماره
صفحات -
تاریخ انتشار 2012